

Welcome to heist-salt’s Documentation!

	Heist-Salt
	Getting Started

	What is Heist-Salt

	Running Heist-Salt as unprivileged user

	Artifacts
	Building Custom Salt Bins

	Salt Artifact

	Heist Master

	Heist Minion

	Heist Proxy Minion

	Releases
	v3.0.0 (2021-07-15)

	v4.0.0 (2021-08-18)

	v5.0.0 (2021-10-25)

	v5.1.0 (2021-11-04)

	v5.2.0 (2021-12-07)

	v5.3.0 (2022-07-12)

	v5.3.1 (2022-07-13)

	6.0.0 (2023-05-03)

	6.0.1 (2023-05-08)

	6.0.2 (2023-05-18)

	Bootstrap
	Bootstrapping Minions to Existing Masters

	Agentless
	Agentless Minions

	Transport
	Pluggable Tunnel System

	Development
	Changelog

	Generating the Salt Minion Key

Get Involved

	Contributing Guide
	TL;DR Quickstart

	Ways to contribute

	Overview of how to contribute to this repository

	Prerequisites

	Fork, clone, and branch the repo

	Set up your local preview environment

	Sync local master branch with upstream master

	Preview HTML changes locally

	Testing a pop project

	License

	GitLab Repository [https://gitlab.com/saltstack/pop/heist-salt]

Indices and tables

	Module Index

Heist-Salt

	Getting Started
	Prerequisites

	Installation

	Setting up a Salt master

	Using onedir binary

	Using onedir system packages

	Pip install Salt

	Making your roster

	What is Heist-Salt

	Running Heist-Salt as unprivileged user

Getting Started

Prerequisites

	Python 3.7+

	git (if installing from source, or contributing to the project)

Installation

Note

If wanting to contribute to the project, and setup your local development
environment, see the CONTRIBUTING.rst document in the source repository
for this project.

If wanting to use heist-salt, you can do so by either
installing from PyPI or from source.

Install from PyPI

To install the latest version from PyPI:

Requires Python 3.7+
pip install heist-salt

Install from PyPi when using Salt’s onedir packages

salt-pip install heist-salt

Note

Due to this issue: https://github.com/saltstack/salt/issues/64192
you cannot run Heist-Salt alongside Salt’s 3006.0 onedir packages.
This was resolved in Salt’s 3006.1 onedir packages.

After heist-salt is installed into the Salt’s onedir packages, you
need to ensure you add the Heist binary to your path. If you installed
the linux 3006.1 Salt onedir packages, by default this path would be
/opt/saltstack/salt/extras-3.10/bin/. This is where the heist binary
is installed when running salt-pip install heist-salt. You could
also directly call the full binary path instead of adding it to your path.
For example:

/opt/saltstack/salt/extras-3.10/bin/heist salt.minion -R /etc/heist/roster

Install from source

heist-salt can also be installed from source:

Requires git and Python 3.6+
git clone https://gitlab.com/saltstack/pop/heist-salt.git
cd heist-salt
pip install -e .

Setting up a Salt master

Don’t worry, this is a snap! Once Heist is installed you will need a
Salt master to connect to if you are using the salt.minion manager.
If you have an existing Salt master running or you are using a different
manager such as salt.master you can skip this section,
just run heist on your Salt master.

Using onedir binary

Download the all-in-one Salt binary for Linux x86_64.

wget https://repo.saltproject.io/salt/py3/onedir/latest/salt-3006.1-onedir-linux-x86_64.tar.xz

This is to install the 3006.1 version of Salt. You can view the directory listing here:
https://repo.saltproject.io/salt/py3/onedir/ to see all of the Salt versions available for download.

Extract the tarball:

tar -xvf salt-3006.1-onedir-linux-x86_64.tar.xz

This will extract a single file named salt. You can now use this single binary to
run the Salt master.

./salt/salt-master

Now you have a running Salt master to control your minions!

Using onedir system packages

You can also install the onedir system packages. Please see the Salt install guide [https://docs.saltproject.io/salt/install-guide/en/latest/]
for instructions on how to install and run the Salt master.

Pip install Salt

If you want to pip install Salt you only need to run:

pip install salt

Now you can run the salt-master in the background:

salt-master -d

Making your roster

A Roster is a file used by Heist to map login information to the
systems in your environment. This file can be very simple and just
needs to tell Heist where your systems are and how to log into them
via ssh. Open a file called roster.cfg and add the data needed to connect
to a remote system via ssh:

192.168.4.4:
 username: fred
 password: freds_password

The roster files typically all live inside of a roster directory. But to get
started will execute a single roster file with heist:

heist <heist-manager> -R roster.cfg

Please see heist’s roster [https://heist.readthedocs.io/en/latest/topics/rosters.html] documentation for more information on rosters.

To use the salt.minion manager to deploy and manage a Salt Minion artifact,
run the following:

heist salt.minion -R roster.cfg

To use the salt.master manager to deploy and manage a Salt Master artifact,
run the following:

heist salt.master -R roster.cfg

Assuming your roster is correct, heist will now connect to the remote
system, deploy a Salt minion, and connect it to your running master! Now you
can use the same binary that you started the master with to accept your new
minion’s keys:

./salt/salt-key -A

Then give your minion a few seconds to authenticate and then run your first
salt command on the newly set up minion:

./salt/salt * test.version

That’s it! Now that the minion is up you can run salt commands on it at breakneck
speed, the full power of Salt is at your fingertips!!

What is Heist-Salt

Salt requires an agent be installed across all devices a user desires to manage.
The agent normally requires a manual step to install across all devices, before
being able to get started with Salt. Heist-Salt is a tool that removes this manual
installation step and manages the installation for the user. Heist-Salt uses the
heist [https://heist.readthedocs.io] tool to help manage the artifacts.

Heist Salt is a tool that can manage the deployment and installation of Salt or be
used as an agentless solution for Salt. Heist-Salt uses Heist, which is a tool that
helps manage any artifacts. Heist-Salt uses Heist to help deploy and install the Salt
artifact. Heist-Salt can currently manage the following artifacts:

	Heist Minion

	Heist Master

	Heist Proxy Minion

There are two different use for Heist-Salt:

	
	Agentless Minions: Provides an agentless solution for the user over SSH. This removes
	the requirement to for the user to install an agent across each device they want
to manage with Salt.

	Bootstrapping Minions to Existing Masters: A solution to automate the installation of the Salt onedir across
all devices they want to manage. This solution can also manage upgrades of Salt,
manage the configurations and manage the service.

Running Heist-Salt as unprivileged user

If you are running Heist-Salt as a non root user and using the agentless
mode of Heist-Salt you need to ensure the user running Heist also has the
correct permissions on Salt. Please see the running Salt as unprivileged user [https://docs.saltproject.io/en/latest/ref/configuration/nonroot.html]
instructions on what permissions need to be set for your user.

Artifacts

	Building Custom Salt Bins
	salt_repo_url

	Salt Artifact

	Heist Master

	Heist Minion

	Heist Proxy Minion
	Heist Proxy Minion Grains

Building Custom Salt Bins

To build a custom Salt binary, follow the instructions in the Salt packaging [https://docs.saltproject.io/en/master/topics/packaging/]
documentation.

salt_repo_url

By default, heist-salt will query https://repo.saltproject.io/salt/py3/onedir/repo.json
to return data about the artifacts. The returned json data will include the artifact name,
version and hashes of the artifact.

You can set a custom repo by setting salt_repo_url to a url that points to your custom
repo. The custom repo needs to include a repo.json file and follow the directory structure of
https://repo.saltproject.io/salt/py3/onedir/

Salt Artifact

Heist-salt uses Heist [https://gitlab.com/saltstack/pop/heist] to deploy and
manage the Salt artifact. The Salt binary Heist-Salt deploys is built using relenv [https://github.com/saltstack/relative-environment-for-python].
Relenv creates a reproducable and re-locatable python builds.

Heist automatically downloads artifacts from repo.saltproject.io [https://repo.saltproject.io/salt/onedir/] and uses them to deploy
agents. Heist will automatically download the latest artifact from the repo, unless
it already exists in the artifacts_dir or a specific Salt version is set
via the artifact_version option. Heist will automatically detect the target
OS and download the appropriate binary. If artifact_version is set, heist
will download the Salt binary version from the repo if it exists.

Note

Starting in Heist-Salt version v6.0.0, Heist will only support managing and deploying the
Salt artifact 3006.0 and above.

You can deploy a custom version of Salt onedir package that includes a different version of python,
or more dependency libraries. See the Building Custom Salt Bins documentation for more information.

When the artifacts are downloaded from the remote repo they are placed in
your artifacts_dir. By default this location is /var/tmp/heist/artifacts

The downloaded executables are in a tarball and are versioned with a version number following
the dash right after the name of the binary. It also includes the OS and architecture.
In the case of salt the file looks like this: salt-3006.0-onedir-linux-aarch64.tar.xz.

Heist Master

You can use the salt.master Heist plugin to deploy and manage
a Salt master artifact.

heist salt.master -R roster.cfg

This will automatically download and deploy a Salt master to the
defined targets. This Heist manager will also handle the Salt master upgrades,
and managing the service.

If you want to define Salt master config options to add to the master config file,
you would define them in your roster file like so:

system_name:
 host: 192.168.1.2
 username: root
 password: "rootpassword"
 master_opts:
 log_level_logfile: debug

Heist Minion

There are two ways to differentiate between a Heist-Salt minion
and a regular minion. A Heist-Salt minion communicates with the
master over SSH. Also, a Heist-Salt minion includes a minion_type: heist
grain. If you want to target only heist minions you can with
grains targeting on a Salt Master.

salt -G 'minion_type:heist' test.version

Since Heist-Salt minions communicate over SSH if your Salt Master is attempting
to check for connected minions it will not work by default for Heist Minions. You
will need to set detect_remote_minions to be True in your Salt Master configuration.
This will check for connections the Master is connected to over port 22
by default. If you are running SSH on a different port you can change the
port with remote_minions_port. These settings will allow presence events, the
manage runner and any other features that detect connected minions in to a Salt Master
to work properly.

Heist Proxy Minion

You can use the salt.proxy Heist plugin to deploy and manage
a Salt proxy minion artifact.

heist salt.proxy -R roster.cfg

This will automatically download and deploy a Salt proxy minion to the
defined targets. This Heist manager will also handle the Salt proxy minion upgrades
and managing the service.

If you want to define Salt proxy config options to add to the proxy config file,
you would define them in your roster file like so:

system_name:
 host: 192.168.1.2
 username: root
 password: "rootpassword"
 proxy_opts:
 log_level_logfile: debug

To define the proxy type and any other needed settings for the Salt proxy minion
you will need to use the pillar arg in the roster file. For example:

system_name:
 host: 192.168.1.2
 username: root
 password: "rootpassword"
 pillar:
 proxy:
 proxytype: dummy

This setting ensures the pillar data is set for this minion to configure the Salt proxy
minion type to dummy. This will also edit your top file to ensure this pillar data
is added to your pillar environment. It will use the base pillar environment by default
or look at your Salt opts for pillarenv.

Heist Proxy Minion Grains

There are two ways to differentiate between a Heist-Salt proxy minion
and a regular proxy minion. A Heist-Salt minion communicates with the
master over SSH. Also, a Heist-Salt minion includes a minion_type: heist_proxy
grain. If you want to target only heist proxy minions, you can with
grains targeting on a Salt Master.

salt -G 'minion_type:heist_proxy' test.version

Since Heist-Salt proxy minions communicate over SSH, if your Salt Master is attempting
to check for connected minions, it will not work by default for Heist Minions. You
will need to set detect_remote_minions to True in your Salt Master configuration.
This will check for connections the Master is connected to over port 22
by default. If you are running SSH on a different port, you can change the
port with remote_minions_port. These settings will allow presence events, the
manage runner and any other features that detect connected minions to a Salt Master
to work properly.

Releases

	v3.0.0 (2021-07-15)
	Changelog

	v4.0.0 (2021-08-18)
	Changelog

	v5.0.0 (2021-10-25)
	Changelog

	v5.1.0 (2021-11-04)
	Changelog

	v5.2.0 (2021-12-07)
	Changelog

	v5.3.0 (2022-07-12)
	Changelog

	v5.3.1 (2022-07-13)
	Changelog

	6.0.0 (2023-05-03)
	Changelog

	6.0.1 (2023-05-08)
	Changelog

	6.0.2 (2023-05-18)
	Changelog

v3.0.0 (2021-07-15)

Changelog

Removed

	Remove accept_keys in favore of generate_keys. (#23)

Fixed

	Fixed setup.py to include the correct directory when building package. (#24)

Added

	Add towncrier tool to the heist-salt project to help manage CHANGELOG.md file. (#22)

v4.0.0 (2021-08-18)

Changelog

Deprecated

	Deprecate artifacts.salt.fetch and artifacts.salt.verify_hash in favor of heist.artifacts.init.{fetch,verify}. This will be removed in Heist-Salt version v5.0.0. (#28)

Added

	Allow users to “bootstrap” their minions. This feature will allow a user to deploy a salt minion and point it to a different master. Heist will no longer manage this minion after deployment. (#5)

	Migrate artifact calls to heist/artifact/init.py (#27)

v5.0.0 (2021-10-25)

Changelog

Removed

	Removed salt.artifacts.salt.fetch in favor of heist.artifacts.init.fetch
Removed salt.artifacts.salt.verify_hash in favor of heist.artifacts.init.verify (#28)

Fixed

	Allow heist to work with pkg version. For example 3004-1. It will also continue to allow use of old versioning (3004). (#30)

v5.1.0 (2021-11-04)

Changelog

Fixed

	Fix using heist-salt with Salt versions < 3003 when cleaning the connections. (#32)

	Set minion_type heist grain for bootstrap heist minions. (#33)

	Do not traceback when heist cannot connect to the target host. (#34)

Added

	Add offline_mode option to skip downloading artifact step. (#31)

v5.2.0 (2021-12-07)

Changelog

Fixed

	Do not create files outside of /var/tmp/heist_<user>. This ensures the files /var/log/salt/minion and /etc/salt/minion.d do not get created. (#35)

Added

	Add –onedir option to allow user to use onedir Salt packages. (#36)

v5.3.0 (2022-07-12)

Changelog

Deprecated

	The support for singlebin packages will be removed in v6.0.0. Please use –onedir going forward.
In the v6.0.0 release, onedir will be the default option and the –onedir argument will be removed.

Fixed

	Fix permission denied error when using sudo. (#40)

Added

	Allow users to use the new Heist raw service. (#37)

	Add Support for win_service Plugin for Windows (#38)

	Add Windows Support for SingleBin (#39)

	Added support for OneDir on Windows (#43)

v5.3.1 (2022-07-13)

Changelog

Fixed

	Add packaging as a base requirement for heist-salt. (#50)

6.0.0 (2023-05-03)

Changelog

Changed

	Removing the single bin artifact in favor of the onedir. (#49)

	Heist-Salt will not require salt as a pip dependency. It now checks on startup if salt is installed or not. This allows a user to have Salt installed without pip. (#61)

Fixed

	Return success if a machine is bootstrapped successfully. (#46)

	Ensure raw_service restarts on upgrade of artifact.
Do not re-deploy alias files on upgrade. (#62)

Added

	Add ability to only manage the service of an already deployed artifact.
Add ability to clean the previously deployed artifact before deploying a new artifact. (#25)

	added some better error handling. it isn’t prfect yet. but at least should catch the big stuff. (#47)

	Add aliases for salt-call and salt-minion binaries. (#48)

	Add ability to detect there is a new Salt package and upgrade it. (#51)

	Add ability to deploy Salt proxy (#52)

	Add ability for Heist-Salt to deploy Salt Master. (#53)

	Check if the artifact has already been deployed and verify the artifact. Also, start the service if not started. (#60)

	Added support in Heist-Salt for the new Salt 3006.0 packages.
This is a breaking change as Heist-Salt will only support Salt packages
3006.0 and above. (#66)

	https://gitlab.com/saltstack/pop/heist/-/issues/120 - started with heist-salt roster instead of going through the heist way first. (#120)

6.0.1 (2023-05-08)

Changelog

Fixed

	Ensure we create the pki directory on windows targets when using Salt Minion Heist manager. (#67)

6.0.2 (2023-05-18)

Changelog

Fixed

	Daemonize the Salt master, minion and proxy (-d). (#69)

Bootstrap

	Bootstrapping Minions to Existing Masters

Bootstrapping Minions to Existing Masters

Heist can be used to bootstrap minions to connect to existing masters and not
be connected back through the ssh tunnel. This allows for minions to be deployed
and managed to many system in a very streamlined way.

The only change that needs to take place is that bootstrap: True and the master that
the target system needs to connect to is defined in minion_opts inside the roster:

hostname:
 username: frank
 password: horsebatterystaple
 bootstrap: True
 minion_opts:
 master: salt

This now tells the minion to deploy the salt minion artifact and connect to the specific
master located at the host named salt. When heist is stopped it will not delete anything
and will immediately kill the connection. With this approach you will need to manually
accept the key on the master that the minions are now communicating with.

Agentless

	Agentless Minions

Agentless Minions

Heist-Salt agentless is the default use case for Heist-Salt. Heist-Salt
will automatically deploy and install the Salt minion for the user and
automatically generate and accept the Salt key. Heist-Salt will also establish
a SSH tunnel connection between the Salt Master and the Salt Minion. Once this
connection is established and the Salt Minion is deployed a user can then use
Salt to manage the minion, with all of the communication over SSH. When the Heist-Salt
process is killed it cleans everything up, including removing the Salt Minion agent,
the Salt keys, and the SSH tunnel.

Transport

	Pluggable Tunnel System
	1. Manage files and binaries

	2. Manage a tunnel

	3. Handling Disconnects

Pluggable Tunnel System

The tunnel system in Heist and Heist Salt is pluggable, but currently
the only supported tunnel is asyncssh [https://asyncssh.readthedocs.io/en/latest/]. The tunnel plugin system is used
to create connections from heist to the minions. This connection is used
to do the following:

1. Manage files and binaries

The tunnel helps copy binaries and files over to the minion. The asyncssh [https://asyncssh.readthedocs.io/en/latest/]
tunnel, for example, uses sftp to copy over these files via ssh.

2. Manage a tunnel

Establish an ssh tunnel from the Heist Salt minions to the Salt Master’s publish and
master ports. The asyncssh [https://asyncssh.readthedocs.io/en/latest/] tunnel, for example creates an ssh tunnel on the minions
on ports 44505 and 44506 back to the Salt Master’s master_port and publish_port
ports, by default (4505 and 4506)

Salt minion’s set the publish_port to 44505 and the master_port to 44506 by
default. You can change the minion’s publish_port and master_port by editing the
minion_opts in your roster.

system_name:
 host: 192.168.1.2
 username: root
 password: "rootpassword"
 minion_opts:
 master_port: 54506
 publish_port: 54505

This will edit the minion config to point the master_port to 54506 and the publish_port
to 54505. The SSH tunnel will also use these values to setup the tunnel on these ports on
the minion side.

3. Handling Disconnects

The tunnel detects if there is a disconnect and will attemt to re-connect automatically.
The checkin_time configuration is used to determine in seconds how often to check if
the connection is established.

Development

	Changelog
	How do I add a changelog entry

	How to generate the changelog

Changelog

The Heist-Salt project uses the towncrier [https://pypi.org/project/towncrier/] tool to manage the CHANGELOG.md file.
Theis tool helps manage the changelog and help prevent merge conflicts when managing
one file. This tool adds changelog entries into separate files and before a release
we simply need to run towncrier --version=<version> for it to compile the
changelog correctly.

How do I add a changelog entry

To add a changelog entry you will need to add a file in the changelog directory.
The file name should follow the syntax <issue #>.<type>.

The types are in alignment with keepachangelog:

	removed:
	any features that have been removed

	deprecated:
	any features that will soon be removed

	changed:
	any changes in current existing features

	fixed:
	any bug fixes

	added:
	any new features added

For example if you are fixing a bug for issue number #1234 your filename would
look like this: changelog/1234.fixed. The contents of the file should contain
a summary of what you are fixing. If there is a legitimate reason to not include
an issue number with a given contribution you can add the MR number as the file
name (<MR #>.<type>).

If your MR does not align with any of the types, then you do not need to add a
changelog entry.

How to generate the changelog

This step is only used when we need to generate the changelog right before releasing.
You should NOT run towncrier on your MR, unless you are preparing the final MR
to update the changelog before a release.

You can run the towncrier tool directly or you can use nox to help run the command
and ensure towncrier is installed in a virtual environment. The instructions below
will detail both approaches.

If you want to see what output towncrier will produce before generating the change log
you can run towncrier in draft mode:

towncrier --draft --version=3001

nox -e 'changelog(draft=True)' -- 3000.1

Version will need to be set to whichever version we are about to release. Once you are
confident the draft output looks correct you can now generate the changelog by running:

towncrier --version=3001

nox -e 'changelog(draft=False)' -- 3000.1

After this is run towncrier will automatically remove all the files in the changelog directory.

Generating the Salt Minion Key

By default, when a Salt heist minion is deployed the minion will
generate the key and copy back over to the master. On the master,
it is copied into the accepted keys folder in the master’s pki_dir
directory. If you do not want to generate the key by default, you can
set the generate_keys config option to False. You will need to manually
accept the minion’s key on the master if this is turned off.

Note

Windows targets do not currently support this feature, but it will added
when Salt releases 3006.1

Contributing Guide

Contributions are what make the open source community such an amazing place to
learn, inspire, and create in. Any contributions you make are greatly appreciated!

TL;DR Quickstart

	Have pre-requisites completed:

	git

	nox

	pre-commit

	Python 3.6+

	Fork the project

	git clone your fork locally

	Create your feature branch (ex. git checkout -b amazing-feature)

	Setup your local development environment

setup venv
python3 -m venv .venv
source .venv/bin/activate
pip install -U pip setuptools wheel pre-commit nox

pre-commit configuration
pre-commit install

	Hack away!

	Commit your changes (ex. git commit -m 'Add some amazing-feature')

	Push to the branch (ex. git push origin amazing-feature)

	Open a pull request

For the full details, see below.

Ways to contribute

We value all contributions, not just contributions to the code. In addition to
contributing to the code, you can help the project by:

	Writing, reviewing, and revising documentation, modules, and tutorials

	Opening issues on bugs, feature requests, or docs

	Spreading the word about how great this project is

The rest of this guide will explain our toolchain and how to set up your
environment to contribute to the project.

Overview of how to contribute to this repository

To contribute to this repository, you first need to set up your own local repository:

	Fork, clone, and branch the repo

	Set up your local preview environment

After this initial setup, you then need to:

	Sync local master branch with upstream master

	Edit the documentation in reStructured Text

	Preview HTML changes locally

	Open a PR

Once a merge request gets approved, it can be merged!

Prerequisites

For local development, the following prerequisites are needed:

	git [https://git-scm.com/book/en/v2/Getting-Started-Installing-Git]

	Python 3.6+ [https://realpython.com/installing-python/]

	Ability to create python venv [https://realpython.com/python-virtual-environments-a-primer/]

Windows 10 users

For the best experience, when contributing from a Windows OS to projects using
Python-based tools like pre-commit, we recommend setting up Windows Subsystem
for Linux (WSL) [https://docs.microsoft.com/en-us/windows/wsl/], with the
latest version being WSLv2.

The following gists on GitHub have been consulted with success for several
contributors:

	Official Microsoft docs on installing WSL [https://docs.microsoft.com/en-us/windows/wsl/install-win10]

	A list of PowerShell commands in a gist to Enable WSL and Install Ubuntu 20.04 [https://gist.github.com/ScriptAutomate/f94cd44dacd0f420fae65414e717212d]

	Ensure you also read the comment thread below the main content for
additional guidance about using Python on the WSL instance.

We recommend Installing Chocolatey on Windows 10 via PowerShell w/ Some Starter Packages [https://gist.github.com/ScriptAutomate/02e0cf33786f869740ee963ed6a913c1].
This installs git, microsoft-windows-terminal, and other helpful tools via
the awesome Windows package management tool, Chocolatey [https://chocolatey.org/why-chocolatey].

choco install git easily installs git for a good Windows-dev experience.
From the git package page on Chocolatey, the following are installed:

	Git BASH

	Git GUI

	Shell Integration

Fork, clone, and branch the repo

This project uses the fork and branch Git workflow. For an overview of this method,
see
Using the Fork-and-Branch Git Workflow [https://blog.scottlowe.org/2015/01/27/using-fork-branch-git-workflow/].

	First, create a new fork into your personal user space.

	Then, clone the forked repo to your local machine.

SSH or HTTPS
git clone <forked-repo-path>/heist-salt.git

Note

Before cloning your forked repo when using SSH, you need to create an SSH
key so that your local Git repository can authenticate to the GitLab remote server.
See GitLab and SSH keys [https://docs.gitlab.com/ee/ssh/README.html] for instructions,
or Connecting to GitHub with SSH [https://docs.github.com/en/github-ae@latest/github/authenticating-to-github/connecting-to-github-with-ssh].

Configure the remotes for your main upstream repository:

Move into cloned repo
cd heist-salt

Choose SSH or HTTPS upstream endpoint
git remote add upstream git-or-https-repo-you-forked-from

Create new branch for changes to submit:

git checkout -b amazing-feature

Set up your local preview environment

If you are not on a Linux machine, you need to set up a virtual environment to
preview your local changes and ensure the prerequisites are met for a Python
virtual environment.

From within your local copy of the forked repo:

Setup venv
python3 -m venv .venv
If Python 3.6+ is in path as 'python', use the following instead:
python -m venv .venv

Activate venv
source .venv/bin/activate
On Windows, use instead:
.venv/Scripts/activate

Install required python packages to venv
pip install -U pip setuptools wheel pre-commit nox
pip install -r requirements.txt

Setup pre-commit
pre-commit install

pre-commit and nox Setup

This project uses pre-commit [https://pre-commit.com/] and
nox [https://nox.thea.codes/en/stable/] to make it easier for
contributors to get quick feedback, for quality control, and to increase
the chance that your merge request will get reviewed and merged.

nox handles Sphinx requirements and plugins for you, always ensuring your
local packages are the needed versions when building docs. You can think of it
as Make with superpowers. It is also used to execute the rest of the test
suite.

What is pre-commit?

pre-commit is a tool that will automatically run
local tests when you attempt to make a git commit. To view what tests are run,
you can view the .pre-commit-config.yaml file at the root of the
repository.

One big benefit of pre-commit is that auto-corrective measures can be done
to files that have been updated. This includes Python formatting best
practices, proper file line-endings (which can be a problem with repository
contributors using differing operating systems), and more.

If an error is found that cannot be automatically fixed, error output will help
point you to where an issue may exist.

Sync local master branch with upstream master

If needing to sync feature branch with changes from upstream master, do the
following:

Note

This will need to be done in case merge conflicts need to be resolved
locally before a merge to master in the upstream repo.

git checkout master
git fetch upstream
git pull upstream master
git push origin master
git checkout my-new-feature
git merge master

Preview HTML changes locally

To ensure that the changes you are implementing are formatted correctly, you
should preview a local build of your changes first. To preview the changes:

Activate venv
source .venv/bin/activate
On Windows, use instead:
.venv/Scripts/activate

Generate HTML documentation with nox
nox -e 'docs-html(clean=False)'

Sphinx website documentation is dumped to docs/_build/html/*
You can view this locally
firefox example
firefox docs/_build/html/index.html

Note

If you encounter an error, Sphinx may be pointing out formatting errors
that need to be resolved in order for nox to properly generate the docs.

Testing a pop project

View all nox targets
nox -l

Run tests
nox -e 'tests'

This project is a pop project which makes use of pytest-pop, a
pytest plugin. For more information on pytest-pop, and writing tests
for pop projects:

	pytest-pop README [https://gitlab.com/saltstack/pop/pytest-pop/-/blob/master/README.rst]

	pytest documentation [https://docs.pytest.org/en/stable/contents.html]

License

Note

For a simplified breakdown of license information, it may be helpful to use
tl;drLegal [https://tldrlegal.com/].

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright 2021 VMware, Inc.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License.

Index

 _static/img/SaltProject_Logomark_teal.png

_static/minus.png

_static/plus.png

_static/img/SaltProject_altlogo_teal.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to heist-salt’s Documentation!

 		
 Heist-Salt

 		
 Getting Started

 		
 Prerequisites

 		
 Installation

 		
 Setting up a Salt master

 		
 Using onedir binary

 		
 Using onedir system packages

 		
 Pip install Salt

 		
 Making your roster

 		
 What is Heist-Salt

 		
 Running Heist-Salt as unprivileged user

 		
 Artifacts

 		
 Building Custom Salt Bins

 		
 salt_repo_url

 		
 Salt Artifact

 		
 Heist Master

 		
 Heist Minion

 		
 Heist Proxy Minion

 		
 Heist Proxy Minion Grains

 		
 Releases

 		
 v3.0.0 (2021-07-15)

 		
 Changelog

 		
 v4.0.0 (2021-08-18)

 		
 Changelog

 		
 v5.0.0 (2021-10-25)

 		
 Changelog

 		
 v5.1.0 (2021-11-04)

 		
 Changelog

 		
 v5.2.0 (2021-12-07)

 		
 Changelog

 		
 v5.3.0 (2022-07-12)

 		
 Changelog

 		
 v5.3.1 (2022-07-13)

 		
 Changelog

 		
 6.0.0 (2023-05-03)

 		
 Changelog

 		
 6.0.1 (2023-05-08)

 		
 Changelog

 		
 6.0.2 (2023-05-18)

 		
 Changelog

 		
 Bootstrap

 		
 Bootstrapping Minions to Existing Masters

 		
 Agentless

 		
 Agentless Minions

 		
 Transport

 		
 Pluggable Tunnel System

 		
 1. Manage files and binaries

 		
 2. Manage a tunnel

 		
 3. Handling Disconnects

 		
 Development

 		
 Changelog

 		
 How do I add a changelog entry

 		
 How to generate the changelog

 		
 Generating the Salt Minion Key

 		
 Contributing Guide

 		
 TL;DR Quickstart

 		
 Ways to contribute

 		
 Overview of how to contribute to this repository

 		
 Prerequisites

 		
 Windows 10 users

 		
 Fork, clone, and branch the repo

 		
 Set up your local preview environment

 		
 pre-commit and nox Setup

 		
 What is pre-commit?

 		
 Sync local master branch with upstream master

 		
 Preview HTML changes locally

 		
 Testing a pop project

 		
 License

_static/SaltProject_altlogo_teal.png

_static/SaltProject_Logomark_teal.png

